Modern Information Technology for Cancer Research: What’s in IT for Me? An Overview of Technologies and Approaches.

Full Text

Information technology (IT) can enhance or change many scenarios in cancer research for the better. In this paper, we introduce several examples, starting with clinical data reuse and collaboration including data sharing in research networks. Key challenges are semantic interoperability and data access (including data privacy). We deal with gathering and analyzing genomic information, where cloud computing, uncertainties and reproducibility challenge researchers. Also, new sources for additional phenotypical data are shown in patient-reported outcome and machine learning in imaging. Last, we focus on therapy assistance, introducing tools used in molecular tumor boards and techniques for computer-assisted surgery. We discuss the need for metadata to aggregate and analyze data sets reliably. We conclude with an outlook towards a learning health care system in oncology, which connects bench and bedside by employing modern IT solutions.

 

 

J, Ahlbrandt, Lablans M, Glocker K, Stahl-Toyota S, Maier-Hein K, Maier-Hein L, √úckert F.
Oncology. 2018 Nov 15:1-7. doi: 10.1159/000493638
2018-11-01
https://www.ncbi.nlm.nih.gov/pubmed/30439700
Information technology (IT) can enhance or change many scenarios in cancer research for the better. In this paper, we introduce several examples, starting with clinical data reuse and collaboration including data sharing in research networks. Key challenges are semantic interoperability and data access (including data privacy). We deal with gathering and analyzing genomic information, where cloud computing, uncertainties and reproducibility challenge researchers. Also, new sources for additional phenotypical data are shown in patient-reported outcome and machine learning in imaging. Last, we focus on therapy assistance, introducing tools used in molecular tumor boards and techniques for computer-assisted surgery. We discuss the need for metadata to aggregate and analyze data sets reliably. We conclude with an outlook towards a learning health care system in oncology, which connects bench and bedside by employing modern IT solutions.